Dual role for Drosophila lethal of scute in CNS midline precursor formation and dopaminergic neuron and motoneuron cell fate.

نویسندگان

  • Stephanie B Stagg
  • Amaris R Guardiola
  • Stephen T Crews
چکیده

Dopaminergic neurons play important behavioral roles in locomotion, reward and aggression. The Drosophila H-cell is a dopaminergic neuron that resides at the midline of the ventral nerve cord. Both the H-cell and the glutamatergic H-cell sib are the asymmetric progeny of the MP3 midline precursor cell. H-cell sib cell fate is dependent on Notch signaling, whereas H-cell fate is Notch independent. Genetic analysis of genes that could potentially regulate H-cell fate revealed that the lethal of scute [l(1)sc], tailup and SoxNeuro transcription factor genes act together to control H-cell gene expression. The l(1)sc bHLH gene is required for all H-cell-specific gene transcription, whereas tailup acts in parallel to l(1)sc and controls genes involved in dopamine metabolism. SoxNeuro functions downstream of l(1)sc and controls expression of a peptide neurotransmitter receptor gene. The role of l(1)sc may be more widespread, as a l(1)sc mutant shows reductions in gene expression in non-midline dopaminergic neurons. In addition, l(1)sc mutant embryos possess defects in the formation of MP4-6 midline precursor and the median neuroblast stem cell, revealing a proneural role for l(1)sc in midline cells. The Notch-dependent progeny of MP4-6 are the mVUM motoneurons, and these cells also require l(1)sc for mVUM-specific gene expression. Thus, l(1)sc plays an important regulatory role in both neurogenesis and specifying dopaminergic neuron and motoneuron identities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation and specification of a Drosophila dopaminergic precursor cell.

Dopaminergic neurons play important roles in animal behavior, including motivation, reward and locomotion. The Drosophila dopaminergic H-cell interneuron is an attractive system for studying the genetics of neural development because analysis is focused on a single neuronal cell type. Here we provide a mechanistic understanding of how MP3, the precursor to the H-cell, forms and acquires its ide...

متن کامل

Determination of cell fate along the anteroposterior axis of the Drosophila ventral midline.

The Drosophila ventral midline has proven to be a useful model for understanding the function of central organizers during neurogenesis. The midline is similar to the vertebrate floor plate, in that it plays an essential role in cell fate determination in the lateral CNS and also, later, in axon pathfinding. Despite the importance of the midline, the specification of midline cell fates is still...

متن کامل

The achaete–scute complex proneural genes contribute to neural precursor specification in the Drosophila CNS

BACKGROUND The Drosophila central nervous system (CNS) develops from a segmentally reiterated array of 30 neural precursors. Each precursor acquires a unique identity and goes through a stereotyped cell lineage to produce an invariant family of neurons and/or glia. The proneural genes achaete, scute and lethal of scute are required for neural precursor formation in the Drosophila CNS, and are e...

متن کامل

asense is a Drosophila neural precursor gene and is capable of initiating sense organ formation.

Neural precursor cells in Drosophila arise from the ectoderm in the embryo and from imaginal disc epithelia in the larva. In both cases, this process requires daughterless and the proneural genes achaete, scute and lethal-of-scute of the achaete-scute complex. These genes encode basic helix-loop-helix proteins, which are nuclear transcription factors, as does the asense gene of the achaete-scut...

متن کامل

The achaete-scute complex: generation of cellular pattern and fate within the Drosophila nervous system.

In developing embryos, cells receive and interpret positional information as they become organized into discrete patterns and structures. One excellent model for understanding the genetic regulatory mechanisms that pattern cellular fields is the regulation and function of the achaete-scute complex (AS-C) in the developing nervous system of the fruit fly, Drosophila melanogaster. Three structura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 138 11  شماره 

صفحات  -

تاریخ انتشار 2011